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1 Introduction 

The heat / diffusion equation is a second-order partial differential equation that governs the 

distribution of heat or diffusing material as a function of time and spatial location. Crank (1975) 

provides a particularly in-depth analysis of the mathematics behind the diffusion equation.  

With the advance of computer technology, numerical methods have seen increasing popularity due 

to its computational speed and ability to easily solve complex problems. Fletcher (1988) discusses 

several numerical methods used in solving the diffusion equation (as well as other fluid dynamic 

problems). One popular subset of numerical methods are finite-difference approximations due to 

their easy derivation and implementation. Ames (1977) and Mitchell (1969) provide extensive 

reviews on finite-difference methods for different classes of partial differential equations.  

In this paper, we review some of the many different finite-approximation schemes used to solve 

the diffusion / heat equation and provide comparisons on their accuracy and stability.  

 

2 The Diffusion equation 

The one-dimensional diffusion equation is a parabolic second-order partial differential equation of 

the form  

𝜕𝜙

𝜕𝑡
−  𝜅

𝜕2𝜙

𝜕𝑥2
= 0 (1) 

where 𝜙 =  𝜙(𝑥, 𝑡) is the density of the diffusing material at spatial location 𝑥 and time 𝑡, and the 

parameter 𝜅 is the diffusion coefficient. This equation is also known as the heat equation, which 

this paper may refer to in certain contexts as it allows the author to describe certain boundary 

conditions in terms of the thermodynamics of a conducting rod.  



The majority of this report will focus on numerical schemes solving diffusion equation with 

Dirichlet boundary conditions specified at 𝑥 = 0 and 𝑥 = 𝐿, where 𝐿 is the length of the domain 

𝜙(0, 𝑡) = 0,          𝜙(𝐿, 𝑡) =  0  (2) 

Neumann and periodic boundary conditions will be discussed in later sections. 

 

3 Finite-difference formulations 

In finite-difference methods, the partial differential equations are approximated discretely. That is 

to say, the numerical solution is only defined at a finite number of points along the domain in 

which the partial differential equation is to be solved.  

The finite-difference method discretizes the spatial points along the domain [0, 𝐿] with step-size 

Δ𝑥 =
𝐿

𝑁−1
 where 𝑁 is equal to the number of spatial nodes. Since the solution to the diffusion 

equation 𝜙 is also time-dependent, that is, the solution also evolves with time, we must also 

discretize along the time domain [0, 𝑇], where 𝑇 is the time to which the numerical schemes will 

run until. The time domain is discretized with step-size Δ𝑡 =
𝑇

𝑀−1
, where 𝑀 equal to the number 

of temporal nodes.  

Figure 1 shows an illustration outlining the domain for the solution to the diffusion equation. The 

solid black squares refer to points in the domain that one must compute using finite-difference 

approximations as the other points are either already known or easily calculated.  



 

Figure 1 Discretization mesh for the solution to the 1-D diffusion equation. Open circles refer to known initial values, open squares 

refer to known boundary values, and solid squares refer to points where the values must be computed through finite-difference 

methods. The subscript i refers to discretization in the spatial domain, while the subscript j refers to discretization in the temporal 

domain.  

Before we move onto the derivations of the different computational schemes, we must first find 

approximations to the continuous derivatives in Equation (1). In the table below, 3 first order 

derivative approximations are presented along with their respective truncation errors. 

 

Table 1 Finite-difference approximations for the first order derivatives 

Difference Approx. Formula Truncation Error 

Forward Difference 
𝜕𝜙𝑖

𝜕𝑥
=

𝜙𝑖+1 − 𝜙𝑖

Δ𝑥
 Ο(Δ𝑥) 

Backward Difference 
𝜕𝜙𝑖

𝜕𝑥
=

𝜙𝑖 − 𝜙𝑖−1

Δ𝑥
 Ο(Δ𝑥) 

Central Difference 
𝜕𝜙𝑖

𝜕𝑥
=

𝜙𝑖+1 − 𝜙𝑖−1

Δ2𝑥
 Ο(Δ𝑥2) 

 

Despite the central difference approximation being more accurate (lower truncation error), it 

cannot be easily implemented for finite-difference schemes as the equation does not include the 

𝜙𝑖 term. Therefore, the forward and backward difference approximations are used as the time 

derivative in two of the finite-difference schemes reviewed later on.   



Similarly, the central difference approximation for the second order spatial derivative has the same 

truncation error Ο(Δ𝑥2) and is defined as  

𝜕2𝜙𝑖

𝜕𝑥2
=

𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1

Δ𝑥2
 (3) 

Now that we have approximations for the first and second order derivatives, we can develop the 

finite-difference schemes to compute the solution to the diffusion equation.  

 

4 Forward-Time Central-Space  

In this scheme as well as the other finite-difference methods, we will use the notation 𝜙𝑖
𝑗
 for the 

approximated solution where 𝑖 refers to the spatial discrete index and 𝑗 refers to the temporal 

discrete index.  

A simple explicit scheme to solve the diffusion equation can be derived by simply substituting in 

the second order central and first order forward difference approximations for the continuous 

derivatives in space and time respectively  

𝜙𝑖
𝑗+1

− 𝜙𝑖
𝑗

Δt
= 𝜅

(𝜙𝑖−1
𝑗

− 2𝜙𝑖
𝑗
+ 𝜙𝑖+1

𝑗
)

Δ𝑥2
  (4) 

Solving for 𝜙𝑖
𝑗+1

 and setting  

𝛼 =  
𝜅Δ𝑡

Δ𝑥2
 (5) 

produces the Forward-Time Central-Space (FTCS) scheme for approximating the solution to the 

diffusion / heat equation 

𝜙𝑖
𝑗+1

=  𝛼(𝜙𝑖−1
𝑗

+ 𝜙𝑖+1
𝑗

) + (1 − 2𝛼)𝜙𝑖
𝑗
 (6) 

and results in a computational molecule illustrated as follows in Figure 2. 

 



 

Figure 2 Computational molecule for the finite-difference Forward-Time Central-Space (FTCS) scheme 

 

Stability Criterion 

The dimensionless parameter 𝛼 is known as the Courant number (Courant, et al., 1928), which in 

a physical sense may be seen as the number of spatial nodes that the heat or diffusing material can 

diffuse to in a time-step. Analysis of this parameter using Von Neumann stability analysis can 

provide insight to the stability of the FTCS scheme. Suppose we have a discretized solution of the 

form  

𝜙𝑘
𝑙 = 𝑒𝑖𝜆Δ𝑥𝑙𝑒𝛽Δ𝑡𝑘  (7) 

and we plug it into Equation (6). Doing so outputs the equation  

𝑒𝛽Δ𝑡 = 1 − 4𝛼 sin2 (
𝜆Δ𝑥

2
)  (8) 

Since 𝑒𝛽Δ𝑡  ≤ 1, we can show that, 

𝛼 =  
𝜅Δ𝑡

Δ𝑥2
≤

1

2
  (9) 

Thus, the explicit FTCS scheme remains stable as long as the Courant number is less than or equal 

to 1/2. If the parameter is set above this value, the algorithm becomes unstable with growing 

oscillations. This effectively limits the size of the time-steps to relatively small values. We’ll see 

in the following sections that this is not the case for implicit schemes.  

 



5 Backward-Time Central-Space 

The derivation of the implicit Backward-Time Central Space (BTCS) scheme is similar to the 

FTCS, except that the backward difference is used on the time derivative instead of the forward 

difference 

𝜙𝑖
𝑗
− 𝜙𝑖

𝑗−1

Δt
= 𝜅

(𝜙𝑖−1
𝑗

− 2𝜙𝑖
𝑗
+ 𝜙𝑖+1

𝑗
)

Δ𝑥2
  (10) 

Another difference is that for the FTCS scheme, an explicit equation exists to solve for each point 

whereas in the BTCS scheme, we must simultaneously solve a set of equations over the whole 

spatial domain at each time-step. If we rearrange Equation (10) to separate the points associated 

with each time-step, we produce the equation 

𝜙𝑖
𝑗−1

= −𝛼𝜙𝑖−1
𝑗

+ (1 + 2𝛼)𝜙𝑖
𝑗
−  𝛼𝜙𝑖+1

𝑗
  (11) 

which can be represented as a systems of equation as  

[
 
 
 
 
 
1 + 2𝛼 −𝛼 0 0 0 0

−𝛼 1 + 2𝛼 −𝛼 0 0 0
0 −𝛼 1 + 2𝛼 −𝛼 0 0
0 0 ⋱ ⋱ ⋱ 0
0 0 0 −𝛼 1 + 2𝛼 −𝛼
0 0 0 0 −𝛼 1 + 2𝛼]

 
 
 
 
 

[
 
 
 
 
 
 
 𝜙1

𝑗
 

𝜙2
𝑗

𝜙3
𝑗

⋮

𝜙𝑁−1
𝑗

𝜙𝑁
𝑗

]
 
 
 
 
 
 
 

=   

[
 
 
 
 
 
 
 𝜙1

𝑗−1
 

𝜙2
𝑗−1

𝜙3
𝑗−1

⋮

𝜙𝑁−1
𝑗−1

𝜙𝑁
𝑗−1

]
 
 
 
 
 
 
 

 (12) 

The associated computational molecule for this scheme is illustrated below in Figure 3. 

 

 

Figure 3 Computational molecule for the finite-difference Backward-Time Central-Space (BTCS) scheme 



  

Stability Criterion 

Von Neumann stability analysis of this scheme is similar to that of the FTCS, except we plug in 

Equation (7) into Equation (11) instead. Doing so yields the following  

 

𝑒𝛽Δ𝑡 =
1

1 + 4𝛼 sin2 (
𝜆Δ𝑥
2 )

 (13) 

which implies that the BTCS scheme is unconditionally stable for 𝛼 > 0. This is true for all 

implicit finite-difference schemes, including the Crank-Nicolson scheme to be discussed in the 

next section.  

 

6 Crank-Nicolson   

The implicit Crank-Nicolson (C-N) scheme is similar to the BTCS with a slight difference in 

approximating the spatial derivative. The Crank-Nicolson method (Crank & Nicolson, 1947) 

computes the spatial derivative with an average of the central difference approximation at the 

current and previous time-step, resulting in a scheme that has a temporal truncation error of Ο(Δ𝑡2) 

𝜙𝑖
𝑗
− 𝜙𝑖

𝑗−1

Δt
=

𝜅

2
[
(𝜙𝑖−1

𝑗
− 2𝜙𝑖

𝑗
+ 𝜙𝑖+1

𝑗
)

Δ𝑥2
+

(𝜙𝑖−1
𝑗−1

− 2𝜙𝑖
𝑗−1

+ 𝜙𝑖+1
𝑗−1

)

Δ𝑥2
]  (14) 

Rearranging Equation (14) to isolate the points associated with each time-step results in the 

following  

−
𝛼

2
𝜙𝑖−1

𝑗
+ (1 + 𝛼)𝜙𝑖

𝑗
−

𝛼

2
𝜙𝑖+1

𝑗
= (1 − 𝛼)𝜙𝑖

𝑗−1
+

𝛼

2
(𝜙𝑖−1

𝑗−1
+ 𝜙𝑖+1

𝑗−1
) (15) 

The matrix representation of this equation is similar to that of the BTCS scheme 



[
 
 
 
 
 
 
 
1 + 𝛼 −𝛼

2⁄ 0 0 0 0

−𝛼
2⁄ 1 + 𝛼 −𝛼

2⁄ 0 0 0

0 −𝛼
2⁄ 1 + 𝛼 −𝛼

2⁄ 0 0

0 0 ⋱ ⋱ ⋱ 0
0 0 0 −𝛼

2⁄ 1 + 𝛼 −𝛼
2⁄

0 0 0 0 −𝛼
2⁄ 1 + 𝛼]

 
 
 
 
 
 
 

[
 
 
 
 
 
 
 𝜙1

𝑗
 

𝜙2
𝑗

𝜙3
𝑗

⋮

𝜙𝑁−1
𝑗

𝜙𝑁
𝑗

]
 
 
 
 
 
 
 

=   

[
 
 
 
 
 

𝑎1 
𝑎2

𝑎3

⋮
𝑎𝑁−1

𝑎𝑁 ]
 
 
 
 
 

 (16) 

 

where the coefficients 𝑎𝑖 can be computed as 

𝑎𝑖 = (1 − 𝛼)𝜙𝑖
𝑗−1

+
𝛼

2
(𝜙𝑖−1

𝑗−1
+ 𝜙𝑖+1

𝑗−1
)  (17) 

The computational molecule associated with this scheme is illustrated below in Figure 4.  

 

 

Figure 4 Computational molecule for the finite-difference Crank-Nicolson (C-N) scheme 

 

7 Stability comparison  

In this section, the three finite-difference schemes are implemented with Dirichlet conditions 

𝜙(0, 𝑡) = 𝜙(𝐿, 𝑡) = 0 with an initial condition 𝜙(𝑥, 0) = sin (
𝜋𝑥

𝐿
) to verify the stability criterion 

derived for the various schemes.  

Figure 5 shows the Forward-Time Central-Space (FTCS) scheme implemented with 100 spatial 

nodes and Courant number 𝛼 = 0.5 at different times along the simulation. The solution ran until 



the end time of 2.5 seconds without producing any oscillations. The accuracy of these 

approximations will be considered in the following section.  

 

Figure 5 Forward-Time Central-Space (FTCS) approximation to the diffusion / heat equation evaluated at different times. 

Implemented with Dirichlet boundary conditions. α = 0.5 

  

While keeping the initial and boundary conditions constant from the previous simulation, we vary 

the Courant number 𝛼 to be greater than 0.5, we start to see oscillations in the approximation grow 

as the time evolves.  

Figure 6 shows the FTCS scheme implemented with 𝛼 = 1 evaluated at different times and shows 

that oscillations are produced in the numerical solution. These oscillations are more apparent at 

this scale from approximately t = 0.30 s.   



 

Figure 6 Forward-Time Central-Space (FTCS) approximation to the diffusion / heat equation evaluated at different times. 

Implemented with Dirichlet boundary conditions. α = 1 

As the oscillations tend to grow exponentially with time, only 3 time-points were evaluated for 

this figure in order to keep the scale of the plot consistent with Figure 5.  

Next, we will implement the implicit methods with the same initial and boundary conditions for 

𝛼 = 1. Figure 7 shows the approximations of these two methods evaluated at different time-points.  



 

Figure 7  (a) Backwards-Time Central-Space (BTCS) and (b) Crank-Nicolson (C-N) approximations to the diffusion / heat 

equation evaluated at different times. Implemented with Dirichlet boundary conditions, α = 1 

Both BTCS and Crank-Nicolson approximations provide consistent results without any 

oscillations. This supports our claim on the unconditional stability of the two schemes.  

 



8 Accuracy 

In order to determine the relative accuracy of each method, the truncation errors for each scheme 

are compared. Using the initial condition and the Dirichlet BC stated in Section 6, we derive the 

exact time-dependent solution  

𝜙(𝑥, 𝑡) = sin (
𝜋𝑥

𝐿
) 𝑒−𝜅(

𝜋
𝐿
)
2
𝑡  (18) 

To provide estimates of the truncation error, the 𝐿2 norm between the approximated and exact 

solution is calculated for each scheme at the end time of the simulation 

𝜖 =  ‖𝜙𝑖 − 𝜙𝑒𝑥𝑎𝑐𝑡(𝑥𝑖, 𝑡𝑖)‖2 (19) 

Figure 8 plots the error in 𝐿2 norm for the three finite-difference schemes as a function of the 

spatial step-size. 

 

Figure 8 Error in L2 norm plotted as a function of spatial step-size. Δt = 0.001 s, κ = 1 

 

The accuracy of each method appears to be largely dependent on the spatial step-size used in the 

scheme. The plot shows that as the spatial step-size decreases, both BTCS and Crank-Nicolson 



approximations increase in accuracy. The trend for the FTCS scheme shows that for small spatial 

step-size, the truncation error first decreases before increasing past that of the Crank-Nicolson 

scheme.  

These results are consistent with the results of Dehghan (2004) that show the FTCS scheme 

providing slightly more accurate approximations with decreased spatial step-size and constant 

Courant number.  

 

9 Boundary Conditions 

So far, we’ve only discussed approximations for the diffusion / heat equation with Dirichlet 

boundary conditions. In this section, we will consider other types of boundary conditions and 

discuss details of implementing these for the different schemes.  

 

Neumann boundary conditions  

For Dirichlet boundary conditions (also known as fixed boundary conditions), the endpoints of the 

spatial domain of the solution are explicitly specified as values. Neumann boundary conditions, 

on the other hand, specify values that the derivative of the solution would impose. This would be 

equivalent to specifying the heat flux at the boundaries in the context of the heat equation.  

 

Mixed boundary conditions 

Mixed boundary conditions specify different types of boundary conditions (Dirichlet and 

Neumann) at the end nodes of the solution. For example, we could have a Dirichlet BC at the left 

boundary and values corresponding to a Neumann BC on the right boundary. In the context of the 

heat equation, this would be similar to holding one boundary at a fixed temperature (attached to a 

heat reservoir) and specifying the heat flux at the other. 

 

 



Robin boundary conditions 

These boundary conditions are considered to be a weighted mixture of Dirichlet and Neumann 

boundary conditions and tend to take the form  

𝜙 = 𝑎0 + 𝑏0

𝜕𝜙𝑖

𝜕𝑥
  

where 𝑖 can refer to the 1 (left boundary) or 𝐿 (right boundary) with coefficients 𝑎0 and 𝑏0.  

In the following sections, we will provide several solutions to the diffusion / heat equation using 

various boundary conditions. 

 

10 Neumann boundary condition example  

In this example, the solution to the heat equation is solved with Neumann boundary conditions on 

both ends of the spatial domain  

𝜙(0, 𝑡) = 3,          𝜙(𝐿, 𝑡) =  2  (20) 

In the context of the heat equation, this would correspond to the isolated boundaries of a rod. Using 

the same initial condition 

𝜙(𝑥, 0) = cos (
𝜋𝑥

2𝐿
) + 2 

  

(21) 

the solution to the heat equation is approximated with the Crank-Nicolson scheme in Figure 9. 

 

 

 

 

 

 



Figure 9 Crank-Nicolson (C-N) approximated solution to the diffusion / heat equation as a function of spatial distance and 

time. Neumann boundary conditions applied. Solution at initial and end times shown.  

 

 

 

 

 

 

 

 

 

 

 

 

11 Robin boundary condition example 

With the same initial condition as in the previous section, we now provide an example of a solution 

with Robin boundary conditions 

𝜕𝜙(0, 𝑡)

𝜕𝑥
= 𝛽𝜙(0, 𝑡),          𝜙(𝐿, 𝑡) =  2  (22) 

For the heat equation, these conditions correspond to a heat flux value proportional to the 

temperature at the left boundary and the constant 𝛽. The right boundary is held fixed (Dirichlet), 

corresponding to a rod in contact with a heat reservoir of temperature 2 K. The solution to this 

problem is again approximation by the Crank-Nicolson scheme in Figure 10.  

 

 

 



Figure 10 Crank-Nicolson (C-N) approximated solution to the diffusion / heat equation as a function of spatial distance and 

time. Robin boundary conditions applied. Solution at initial and end times shown. 

 

 

 

 

 

 

 

 

 

 

 

12 Lowest Eigenvalue problem 

The lowest eigenvalue for the solution to the heat equation is proportional to the decay rate of the 

solution. For this problem, we will consider an initial value problem with initial condition 

𝜙(𝑥, 0) = cos (
𝜋𝑥

𝐿
) (23) 

with Dirichlet boundary conditions  

𝜙(0, 𝑡) = 1,          𝜙(𝐿, 𝑡) =  −1  (24) 

The Crank-Nicolson scheme is used to approximate the solution to an arbitrary point in time. 

Simultaneously, the steady state solution of the form  

𝜙(𝑥) =
𝜙(0) − 𝜙(𝐿)

𝐿
𝑥 +  𝜙(0) (25) 

is subtracted from the time-dependent solution. Figure 11 shows the approximated solution at t = 

0 as well as the difference between the approximated and steady state solution. 



 

Figure 11 Plots of the approximated time-dependent solution using C-N scheme (left) and the difference between the 

approximated solution and steady-state solution (right). Computed at t = 0 

 

The solution with the steady state subtracted decays exponentially with time for which the decay 

rate is proportional to the lowest eigenvalue  

𝜆1 =  𝜅 (
𝜋

𝐿
)
2

 (26) 

 

13 Conclusion 

In this paper, three finite-difference schemes are reviewed and implemented for the one-

dimensional diffusion / heat equation for different initial and boundary conditions. Stability 

analysis for the different schemes showed that the explicit Forward-Time Central-Space (FTCS) 

scheme is unstable for Courant numbers greater than 0.5 while implicit schemes such as the 

Backward-Time Central-Space (BTCS) and Crank-Nicolson (C-N) are unconditionally stable. 

Implementation of these schemes with varied Courant numbers verified these claims as the FTCS 

method produced growing oscillations in the solution with time while the implicit schemes (BTCS 

and C-N) did not. To compare the accuracy of each method, the error of L2 norms of the different 

methods were computed. The results showed that the relative accuracy of the schemes were largely 

dependent on the spatial step-size used. As the step-size decreased, the Crank-Nicolson scheme 



produced solutions with lower truncation errors. An eigenvalue problem for the diffusion / heat 

equation was also presented in this paper attempting to relate the decay rate of the approximated 

solution to the lowest eigenvalue. Although the theory shows that the two variables may be 

proportional to each other, numerical approaches to prove this claim were unfortunately 

unsuccessful. 
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